
 Database

1.mora install

2.
Microsoft.EntityFrameworkCore.SqlServer

Microsoft.EntityFrameworkCore.Design

Microsoft.EntityFrameworkCore.Tools potrebno za migracii

3.
Tools
Connect to Database
Enter Server Name and database vo Advance ima conection string
can not find server

copy server name

enter server name and choose database -> ok
ili
Server Explorer DataConections ima connection string

Adding the DbContext to dependency injection:

public void ConfigureServices(IServiceCollection services)
 {

//in appsettings.json file

"ConnectionStrings": {
 "conn": "Data Source=ALEK;Initial Catalog=EFCore;Integrated Security=True"
 }

What is the difference between the following in a database connection string Trusted_Connection=True;

 Integrated Security=SSPI;

Integrated Security=true;

All the above 3 settings specify the same thing, use Integrated Windows Authentication to connect to SQL

Server instead of using SQL Server authentication.

We can use either AddDbContext() or AddDbContextPool() method to register our application specific

DbContext class with the ASP.NET Core dependency injection system.

The difference between AddDbContext() and AddDbContextPool() methods is, AddDbContextPool()

method provides DbContext pooling. With DbContext pooling, an instance from the DbContext pool is

provided if available, rather than creating a new instance.

From a performance standpoint AddDbContextPool() method is better over AddDbContext() method.

AddDbContextPool() method is introduced in ASP.NET Core 2.0.

UseSqlServer() extension method is used to configure our application specific DbContext class to
use Microsoft SQL Server as the database.

services.AddDbContext<AppDbContext>(options =>

 options.UseSqlServer(configuration.GetConnectionString("MyConnectionString")) //adding
connection string

 .EnableSensitiveDataLogging() //default parameters are hidden this will enable them to be

showed

);

 }

//or you can add connection string in the DatabaseContext class
 protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
 {
 optionsBuilder.UseSqlServer(connectionString); // add connection string

 }

 public AppDbContext(DbContextOptions<AppDbContext> options):base(options)
 {

 }

must specifi get and set on DbSet to be able to use them otherwise it will be null
 public DbSet<Samurai> Samurais { get; set; } //the table will be named Samurais or

you can specify the name by adding attribute [Table("Samurais")]

Migrations

in Package Manager Console you can exceute power schell commands

get-help about_entityframeworkcore.

Add-Migration SomeName Adds a new migration.it creates new file in Migration Folder with the name of

the migration that files contain two methods the Up() method gets executed if migration is appllied with

Update-Database the Down() method executes when the migration is removed.

if Add-Migration 'RecruitmentProcesLevel from Candidate to RecruitmentProcessCandidate'

Build started...

Build failed. Sometimes helps if project is rebuild. usually the project have errors

protected override void Up(MigrationBuilder migrationBuilder)
 {}

 protected override void Down(MigrationBuilder migrationBuilder)
 {}

Update-Database SomeName(optional) - Updates the database to a specified migration by default the

latest migration applies if name is not specefied.this command can also remove applied migrations with

Update-Database SomeName it all migrations after SomeName will be removed will get back to

SomeName and type Remove-Migration to remove the migration from the Snapshot and get back

to SomeName.

Remove-Migration remove latest migration that is not applied(with Update-Database) yet

update-database 0 This will wipe the database and allow you to remove the Migration Snapshot on your

Solution

The Database Update Command The update command takes one argument (the migration

name) and several parameters, all optional. If the command is executed without a migration

name, the command updates the database to the most recent migration, creating the database

if necessary. If a migration is named, the database will be updated to that migration. All previous

migrations that have not yet been applied will be applied as well. As migrations are applied,

their names are stored in the __EFMigrationsHistory table. If the named migration has a

timestamp that is earlier than other applied migrations, all of the later migrations are rolled

back. If a 0 (zero) is passed in as the named migration, all migrations are reverted, leaving an

empty database (except for the __EFMigrationsHistory table).

Remove a Migration

 If you want to remove a migration, first roll back to an earlier migration or use “dotnet ef

database update 0” to roll all migrations back. You can’t remove a migration that has been

applied to the database. Once a migration has been unapplied (or has never been applied), you

can remove them, one at a time, starting with the most recent migration. You remove the last

migration using the “dotnet ef migrations remove” command. This process will revert the

ApplicationDbContextModelSnapshot to match the prior migration’s designer class and then

remove the migration from the project.

if you add migration and then write Script-Migration a script will be generated and promped to

you.

from a migration file you can update databse so ef core can create the database or generate

script

update-database -verbose will let you see everything the update-database command is doing

Create DbContext and classes from database

Parameters:

S C AF FOL D -D BCO NTE XT

Parameter Description

-Connection

<String>

The connection string to the database. For ASP.NET Core 2.x projects, the value can

be name=<name of connection string>. In that case the name comes from the

configuration sources that are set up for the project. This is a positional parameter and

is required.

-Provider <String> The provider to use. Typically this is the name of the NuGet package, for

example: Microsoft.EntityFrameworkCore.SqlServer. This is a positional parameter and is

required.

-OutputDir <String> The directory to put files in. Paths are relative to the project directory.

-ContextDir <String> The directory to put the DbContext file in. Paths are relative to the project directory.

-Namespace

<String>

The namespace to use for all generated classes. Defaults to generated from the root

namespace and the output directory. (Available from EFCore 5.0.0 onwards.)

-ContextNamespace

<String>

The namespace to use for the generated DbContext class. Note: overrides -Namespace.

(Available from EFCore 5.0.0 onwards.)

-Context <String> The name of the DbContext class to generate.

-Schemas <String[]> The schemas of tables to generate entity types for. If this parameter is omitted, all

schemas are included.

-Tables <String[]> The tables to generate entity types for. If this parameter is omitted, all tables are

included.

-DataAnnotations Use attributes to configure the model (where possible). If this parameter is omitted,

only the fluent API is used.

-UseDatabaseNames Use table and column names exactly as they appear in the database. If this parameter is

omitted, database names are changed to more closely conform to C# name style

conventions.

-Force Overwrite existing files.

-NoOnConfiguring Suppresses generation of the OnConfiguring method in the generated DbContext class.

(Available from EFCore 5.0.0 onwards.)

provider and connection string are required

Ef Core reads Dbcontext(DbSets) and classes to determen database design this is mapping by

convention

to overide these conventions use Fluent Mappings in onModelCreating

or another way to overide conventions you can use Database Annotations

The Fluent API is the most powerful of the configuration methods and overrides any data annotations or

conventions that are in conflict.

OnModelCreating

The DbContext class has a method called OnModelCreating that takes an instance of ModelBuilder as a

parameter. This method is called by the framework when your context is first created and when new

migration is added (se koristi za mapiranje na modelot migraciite gi koristat rabotite definirani vo

OnModelCreating) to build the model and its mappings in memory.. You can override this method to add

your own configurations:

public class SampleContext : DbContext

{

 // Specify DbSet properties etc

 protected override void OnModelCreating(ModelBuilder modelBuilder)

 {

 // add your own configuration here

 }

}

protected override void OnModelCreating(ModelBuilder modelBuilder)

{

 Seeding

 modelBuilder.Entity[Employee]().HasData(

 new Employee

 {

 Id = 1,

 Name = "Mark",

 Department = Dept.IT,

 Email = "mark@pragimtech.com"

 }

Specify Table Name for Entety
modelBuilder.Entity<Job>().ToTable("TableName");

mapping many to many
 modelBuilder.Entity<CompanyJob>()
 .HasKey(t => new { t.JobId, t.CompanyId });

 modelBuilder.Entity<CompanyJob>()
 .HasOne(pt => pt.Company)
 .WithMany(p => p.CompanyJobs)
 .HasForeignKey(pt => pt.CompanyId);

 modelBuilder.Entity<CompanyJob>()
 .HasOne(pt => pt.Job)
 .WithMany(t => t.CompanyJobs)
 .HasForeignKey(pt => pt.JobId);

Define Shadow prop

add shadow prop in every entity

);

Fluent API in Entity Framework Core

 The term Fluent API refers to a pattern of programming where method calls are chained together with

the end result being certainly less verbose and arguably more readable than a series of statements:

1. // series of statements

2. modelBuilder.Entity<Order>().Property(t => t.OrderDate).IsRequired();

3. modelBuilder.Entity<Order>().Property(t => t.OrderDate).HasColumnType("Date");

4. modelBuilder.Entity<Order>().Property(t => t.OrderDate).HasDefaultValueSql("GetDate()");

5.

6. // fluent api chained calls

7. modelBuilder.Entity<Order>()

8. .Property(t => t.OrderDate)

9. .IsRequired()

10. .HasColumnType("Date")

11. .HasDefaultValueSql("GetDate()");

Entity Framework Fluent API is used to configure domain classes to override conventions. EF Fluent API is

based on a Fluent API design pattern (a.k.a Fluent Interface) where the result is formulated by method

chaining.

In Entity Framework Core, the ModelBuilder class acts as a Fluent API. By using it, we can configure many

different things, as it provides more configuration options than data annotation attributes.

Entity Framework Core Fluent API configures the following aspects of a model:

1. Model Configuration: Configures an EF model to database mappings. Configures the default

Schema, DB functions, additional data annotation attributes and entities to be excluded from

mapping.

2. Entity Configuration: Configures entity to table and relationships mapping e.g. PrimaryKey,

AlternateKey, Index, table name, one-to-one, one-to-many, many-to-many relationships etc.

3. Property Configuration: Configures property to column mapping e.g. column name, default value,

nullability, Foreignkey, data type, concurrency column etc.

Fluent API Configurations

Override the OnModelCreating method and use a parameter modelBuilder of type ModelBuilder to

configure domain classes

The following table lists important methods for each type of configuration.

Configurations Fluent API Methods Usage

Model

Configurations

HasDbFunction() Configures a database function when targeting a relational

database.

HasDefaultSchema() Specifies the database schema.

https://en.wikipedia.org/wiki/Fluent_interface
https://en.wikipedia.org/wiki/Method_chaining
https://en.wikipedia.org/wiki/Method_chaining
https://docs.microsoft.com/en-us/ef/core/api/microsoft.entityframeworkcore.modelbuilder

HasAnnotation() Adds or updates data annotation attributes on the entity.

HasSequence() Configures a database sequence when targeting a relational

database.

Entity

Configuration

HasAlternateKey() Configures an alternate key in the EF model for the entity.

HasIndex() Configures an index of the specified properties.

HasKey() Configures the property or list of properties as Primary Key.

HasMany() Configures the Many part of the relationship, where an entity

contains the reference collection property of other type for one-to-

Many or many-to-many relationships.

HasOne() Configures the One part of the relationship, where an entity

contains the reference property of other type for one-to-one or

one-to-many relationships.

Ignore() Configures that the class or property should not be mapped to a

table or column.

OwnsOne() Configures a relationship where the target entity is owned by this

entity. The target entity key value is propagated from the entity it

belongs to.

ToTable() Configures the database table that the entity maps to.

Property

Configuration

HasColumnName() Configures the corresponding column name in the database for the

property.

HasColumnType() Configures the data type of the corresponding column in the

database for the property.

HasComputedColumnSql() Configures the property to map to computed column in the

database when targeting a relational database.

HasDefaultValue() Configures the default value for the column that the property maps

to when targeting a relational database.

HasDefaultValueSql() Configures the default value expression for the column that the

property maps to when targeting relational database.

HasField() Specifies the backing field to be used with a property.

HasMaxLength() Configures the maximum length of data that can be stored in a

property.

IsConcurrencyToken() Configures the property to be used as an optimistic concurrency

token.

IsRequired() Configures whether the valid value of the property is required or

whether null is a valid value.

IsRowVersion() Configures the property to be used in optimistic concurrency

detection.

IsUnicode() Configures the string property which can contain unicode

characters or not.

ValueGeneratedNever() Configures a property which cannot have a generated value when

an entity is saved.

ValueGeneratedOnAdd() Configures that the property has a generated value when saving a

new entity.

ValueGeneratedOnAddOrUpdate() Configures that the property has a generated value when saving

new or existing entity.

ValueGeneratedOnUpdate() Configures that a property has a generated value when saving an

existing entity.

 Reference Loop Handling

Install-Package Microsoft.AspNetCore.Mvc.NewtonsoftJson

 services.AddControllersWithViews().AddNewtonsoftJson(opt =>

 {

 opt.SerializerSettings.ReferenceLoopHandling = ReferenceLoopHandling.Ignore;

 });

ReferenceLoopHandling.Ignore; ako e ignore ne pecati loop

ReferenceLoopHandling.Error; error frla isklucok

ReferenceLoopHandling.Serialize; pecati loop

Mappings

name conventions + fluent Api + Data Annotations

One to One

Ef 6 Efcore

EF Core creates a unique index on the NotNull foreign key column StudentId in

the StudentAddresses table, as shown above. This ensures that the value of the

foreign key column StudentId must be unique in the StudentAddress table, which

is necessary of a one-to-one relationship.

[Table("Candidates")]
 public class Candidate

 {
 [Key]
 public int Id { get; set; }
 [Required]
 public string FullName { get; set; }
 [Required]
 public string Email { get; set; }
 [Required]
 public string Password { get; set; }
 public int Age { get; set; }
 public int? CvId { get; set; }
 [ForeignKey("CvId")]
 public CV Cv { get; set; }

}

 [Table("Cv")]
 public class CV
 {
 [Key]
 public int Id { get; set; }
 [Required]
 public string Name { get; set; }
 [Required]
 public byte[] File { get; set; }
 [Required]
 public DateTime UploadDate { get; set; }
 public Candidate candidate { get; set; }
 }

Many to Many Efcore

ef6

Ef core many to many addidional

use IList for navigation prop public IList<Job> jobs { get; set; } so you can add
CandidateJob candidateJob = new CandidateJob { candidate = candidate, job = job };
job.candidates.Add(candidateJob); or you can directly via dbContex

or

Many-to-many

Many-to-many relationships without an entity class to represent the join table are not

yet supported. However, you can represent a many-to-many relationship by including

an entity class for the join table and mapping two separate one-to-many relationships.

public class Post

{

 public int PostId { get; set; }

 public string Title { get; set; }

 public string Content { get; set; }

 public List<PostTag> PostTags { get; set; }

}

public class Tag

{

 public string TagId { get; set; }

 public List<PostTag> PostTags { get; set; }

}

public class PostTag

{

 public int PostId { get; set; }

 public Post Post { get; set; }

 public string TagId { get; set; }

 public Tag Tag { get; set; }

}

class MyContext : DbContext

{

 public DbSet<Post> Posts { get; set; }

 public DbSet<Tag> Tags { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)

 {

 modelBuilder.Entity<PostTag>()

 .HasKey(t => new { t.PostId, t.TagId });

 modelBuilder.Entity<PostTag>()

 .HasOne(pt => pt.Post)

 .WithMany(p => p.PostTags)

 .HasForeignKey(pt => pt.PostId);

 modelBuilder.Entity<PostTag>()

 .HasOne(pt => pt.Tag)

 .WithMany(t => t.PostTags)

 .HasForeignKey(pt => pt.TagId);

 }

}

one to many

[Table("Jobs")]
 public class Job
 {
 [Key]
 public int Id { get; set; }
 [Required]
 public string JobTitle { get; set; }
 [Required]
 public DateTime DatePosted { get; set; }
 public DateTime ActiveToDate { get; set; }
 [Required]
 public string JobDescriptions { get; set; }

 [ForeignKey("RecruiterFK")]
 public Recruiter recruiter { get; set; }
 public int RecruiterFK { get; set; }

}

 [Table("Recruiters")]
 public class Recruiter
 {
 [Key]
 public int Id { get; set; }
 [Required]
 public string FullName { get; set; }
 [Required]
 public string Email { get; set; }
 [Required]
 public string Password { get; set; }
 public IList<Job> jobs { get; set; }

}

foreign key

if foreign key are not specified ef core will create shadow properties but can mix up the

principle and dependent entity ef core will guess for example making the dependand entity

principle which you dont want

one to one

with fluent api you can specefied dependent and principle in this case SecretIdenitty is

dependent

one to one Samurai Secret Identity

the foreign key of SecretIdentity will the samurai primary key

fk with fluent api without name convention or annotation for one to one

Shadow Properties

One to One

 public class Samurai
 {

 public int Id { get; set; }
 public string Name { get; set; }
 public Horse horse { get; set; } //required

 }

Samurai can be without Horse

Horse must have Samurai

except if public int SamuraiId is null

public class Horse
 {

 public int Id { get; set; }
 public string Name { get; set; }

 public int SamuraiId { get; set; } //required

 [ForeignKey("SamuraiFk")] //if naming conventional are not followed for SamuraiId
 public Samurai samurai { get; set; }

 }

select * from Samurai

select * from Horse

Fluent Api one to one

modelBuilder.Entity<Student>()
 .HasOne<StudentAddress>(s => s.Address)
 .WithOne(ad => ad.Student)
 .HasForeignKey<StudentAddress>(ad => ad.AddressOfStudentId);

One to Many

The following code shows a one-to-many relationship between Blog and Post

public class Blog

{

 public int BlogId { get; set; }

 public string Url { get; set; }

 public List<Post> Posts { get; set; }

}

public class Post

{

 public int PostId { get; set; }

 public string Title { get; set; }

 public string Content { get; set; }

 public int BlogId { get; set; }

 [ForeignKey("BlogFk")] //if naming conventional are not followed for BlogId(class name

+ Id)

 public Blog Blog { get; set; }

}

• Post is the dependent entity

• Blog is the principal entity

• Blog.BlogId is the principal key (in this case it is a primary key rather than an

alternate key)

• Post.BlogId is the foreign key

• Post.Blog is a reference navigation property

• Blog.Posts is a collection navigation property

• Post.Blog is the inverse navigation property of Blog.Posts (and vice versa)

While it is recommended to have a foreign key property defined in the dependent entity class, it

is not required. If no foreign key property is found, a shadow foreign key property will be

introduced

Fluent Api one to many

modelBuilder.Entity<Post>()
 .HasOne(p => p.Blog)
 .WithMany(b => b.Posts)

 .HasForeignKey(p => p.BlogForeignKey);

public class Blog
{
 public int BlogId { get; set; }
 public string Url { get; set; }

 public List<Post> Posts { get; set; }
}

public class Post
{
 public int PostId { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }

 public int BlogForeignKey { get; set; }
 public Blog Blog { get; set; }

https://docs.microsoft.com/en-us/ef/core/modeling/shadow-properties

}

with no foreign key will create shadow prop

 modelBuilder.Entity<Post>()
 .HasOne(p => p.Blog)
 .WithMany(b => b.Posts);

public class Blog
{
 public int BlogId { get; set; }
 public string Url { get; set; }

 public List<Post> Posts { get; set; }
}

public class Post
{
 public int PostId { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }

 public Blog Blog { get; set; }
}

you can add custom name for shodow prop

 // Add the shadow property to the model
 modelBuilder.Entity<Post>()

 .Property<int>("BlogForeignKey");

 // Use the shadow property as a foreign key
 modelBuilder.Entity<Post>()
 .HasOne(p => p.Blog)
 .WithMany(b => b.Posts)

 .HasForeignKey("BlogForeignKey");

Many-to-many

 relationships without an entity class to represent the join table are not yet supported.

However, you can represent a many-to-many relationship by including an entity class

for the join table and mapping two separate one-to-many relationships.

you can add many to many object directly in dbcontext.add() method

class MyContext : DbContext

{

 public DbSet<Post> Posts { get; set; }

 public DbSet<Tag> Tags { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)

 {

 modelBuilder.Entity<PostTag>()

 .HasKey(t => new { t.PostId, t.TagId });

 modelBuilder.Entity<PostTag>()

 .HasOne(pt => pt.Post)

 .WithMany(p => p.PostTags)

 .HasForeignKey(pt => pt.PostId);

 modelBuilder.Entity<PostTag>()

 .HasOne(pt => pt.Tag)

 .WithMany(t => t.PostTags)

 .HasForeignKey(pt => pt.TagId);

 }

}

public class Post

{

 public int PostId { get; set; }

 public string Title { get; set; }

 public string Content { get; set; }

 public List<PostTag> PostTags { get; set; }

}

public class Tag

{

 public string TagId { get; set; }

 public List<PostTag> PostTags { get; set; }

}

public class PostTag

{

 public int PostId { get; set; } //required

 public Post Post { get; set; } //optional

 public string TagId { get; set; } //required

 public Tag Tag { get; set; } //optional

}

Visualizing how Ef Core see my Model

visualStudio Insaller->Individual components ->DGML editor must be installed

righ click the project where dbcontext live and choose

Interacting with Data

with 4 objects and more it will bulk insert

Use FromSqlRaw to execute a SQL query or stored procedure that returns entities.

Use ExecuteSqlRaw to execute a SQL query or stored procedure that performs database

operations but does not return entities example insert update delete but return number of rows

affected

Using Related Data to filter

with this you dont load related data just use the related data to filter samurais

Loading Related Data

Eager Loading

• Eager loading means that the related data is loaded from the database as part of the

initial query.

Eager loading loads related entities as part of the query, i.e. the enties are loaded when the

query is actually executed.

Include always loads the entire set of related objects you can not filter related data

properties only parent properties like
 var jobWithRelated = await appDbContext.jobs
 .Where(j => j.RecruiterFK == job.RecruiterFK)
 .Include(j => j.recruiter)
 .Include(j => j.company).ToListAsync();

EF Core 5.0 include method will allow for filtering. This basically means you’ll be able to

write the “include where” statement with LINQ!

https://docs.microsoft.com/en-us/ef/core/querying/related-data/eager

var blogs = context.Blogs

 .Include(e => e.Posts.Where(p => p.Title.Contains("Cheese")))

 .ToList();

does ef core track childern and grand??

Query Projections

enteties are beign tracked by this query projection and will mark first item as

modified

Explcit Loading

• Explicit loading means that the related data is explicitly loaded from the database at a

later time.

https://docs.microsoft.com/en-us/ef/core/querying/related-data/explicit

samurai will be in loaded in memory

collections for collections properties

Reference for single propertie

I think explicit loading can't include grandChildrens(samurai gets Horse but not

Horse's Complex Type objects) only enteies that are beign tracked

 0 appDbContext.Attach(job);
 1 await appDbContext.Entry(job).Reference(r => r.recruiter).LoadAsync();
 2 await appDbContext.Entry(job).Reference(c => c.company).LoadAsync();

koga ke go loadiram recruier ke go zeme job RecruiterFk i ke bara spored nego da go

popolni bez related entities

za kolekcija

0 job ima company i recruiter null

1 job dobiva recruiter recruiter so job 1 only tracked company null

2 job dobiva company company so recruiter i job tracked i prvoto dobiva company

 recruiter's related wont be included only job

only enteies that are beign tracked like job cz it is tracked with attach

with secound call compan's jobs will be incuded but only tracked

If change tracking is enabled, then when query materializes an entity, EF Core will automatically

set the navigation properties of the newly loaded entity to refer to any entities already loaded,

and set the navigation properties of the already-loaded entities to refer to the newly loaded

entity.for example

 appDbContext.Attach(recruiter);
 await appDbContext.Entry(recruiter).Reference(r => r.company).LoadAsync();
 await appDbContext.Entry(recruiter).Collection(j => j.jobs).LoadAsync();

if job has company prop that refers to current job it will be populated cz is already in

memory

Lazy Loading

lazy loading is off by default

what is lazy loading? see image

Views and Procedures

you can use migrations to add views or procedures

in Up method migrationBuilder.Sql(@" ")

in down method delete procedure or views

for views

Ef core will not track enteties marked with HasNoKey()

for procedures

Owned type

Ef core assumes that every class is an entity

if we want to create class that is not entity we must mapp it explicitly

so the property (class) in the class Samurai BetterName can be resolved in with the

property's (class's) properties, now the Samurai entity will have the BetterName

class properties define in itself

to have the BetterName class properties defined in another table

to change the column names

get id from entity

 var std = new Student(){ StudentName = "Steve" };

 context.Add(std);

 context.SaveChanges();

 Console.Write(std.StudentID); // 1

It will be negative until you save your changes. Just call Save on the context.
_dbContext.Locations.Add(location);

_dbContext.Save();

After the save, you will have the ID which is in the database.

Logging

public static readonly ILoggerFactory MyLoggerFactory

 = LoggerFactory.Create(builder =>

 {

 builder

 .AddFilter((category, level) =>

 category == DbLoggerCategory.Database.Command.Name

 && level == LogLevel.Information)

 .AddConsole();

 });

In this example, the log is filtered to only return messages:

• in the 'Microsoft.EntityFrameworkCore.Database.Command' category

• at the 'Information' level

apply thr logger

optionsBuilder.UseLoggerFactory(
 DbCommandConsoleLoggerFactory).EnableSensitiveDataLogging();

or

 services.AddDbContext<AppDbContext>(options =>

options.UseSqlServer(configuration.GetConnectionString("MyConnectionString")));
 //.EnableSensitiveDataLogging()

 //.UseLoggerFactory(DbCommandConsoleLoggerFactory)
 //loging

public static readonly LoggerFactory ChangeTrackingAndSqlConsoleLoggerFactory
 = new LoggerFactory(new[] {
 new ConsoleLoggerProvider (

 (category, level) =>
 (category == DbLoggerCategory.ChangeTracking.Name |
 category==DbLoggerCategory.Database.Command.Name)
 && level==LogLevel.Debug ,true)
 });

Apart from the Log Levels, the logger API defines

several DBLogger categories. We can use them to filter out the log.

DBLogger Category Description

DbLoggerCategory.ChangeTracking.Name Logger category for messages from change detection and

tracking.

DbLoggerCategory.Database.Name Logger categories for messages related to database

interactions.

DbLoggerCategory.Database.Connection.Name Logger category for messages related to connection

operations.

DbLoggerCategory.Database.Transaction.Name Logger category for messages related to transaction

operations.

DbLoggerCategory.Database.Command.Name Logger category for command execution, including SQL

sent to the database.

DbLoggerCategory.Infrastructure.Name Logger category for miscellaneous messages from the

Entity Framework infrastructure.

DbLoggerCategory.Migrations.Name Logger category messages from Migrations.

DbLoggerCategory.Query.Name Logger category for messages related to queries,

excluding the generated SQL, which is in the

DbLoggerCategory.Database.Command category.

DbLoggerCategory.Scaffolding.Name Logger category for messages from scaffolding/reverse

engineering.

DbLoggerCategory.Update.Name Logger category for messages related to SaveChanges(),

excluding messages specifically relating to database

interactions which are covered by the

DbLoggerCategory.Database categories.

DbLoggerCategory.Model.Name Logger categories for messages related to model building

and metadata.

DbLoggerCategory.Model.Validation.Name Logger category for messages from model validation.

Cascade

ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }

Specifies what action happens to rows in the table that is altered, if those rows have a
referential relationship and the referenced row is deleted from the parent table. The default
is NO ACTION.

//ako izbrisam company vo recruiter na companyfk ke ima null
 modelBuilder.Entity<Recruiter>()
 .HasOne(r => r.company)
 .WithMany(c => c.recruiters)
 .OnDelete(DeleteBehavior.SetNull);

SaveChanges

EF Core wraps each call to SaveChanges/SaveChangesAsync in a transaction

Tracking vs. NoTracking Queries

When data is read from the database into a DbSet, the entities (by default) are tracked by the change

tracker. This is typically what you want in your application. However, there might be times when you

need to get some data from the database, but you don’t want it to be tracked by the change tracker.

The reason might be performance (tracking original and current values for a large set of records can add

memory pressure) or maybe you know those records will never be changed by the part of the

application that needs the data. To load data into a DbSet without adding the data to the Change

Tracker, add AsNoTracking into the LINQ statement. This signals EF Core to retrieve the data without

adding it into the ChangeTracker.

Owned Object Types

 Using a C# class as a property on an entity to define a collection of properties for another entity was

first introduced in version 2.0, but became much more usable in version 2.1. When types marked with

the [Owned] attribute are added as a property of an entity, EF Core will add all of the properties from

the [Owned] entity class to the owning entity. This increases the possibility of C# code reuse.

	Fluent API in Entity Framework Core
	Fluent API Configurations
	Many-to-many

